

Barcode: Design and validate NGS barcodes

[image: _images/barcode.svg]
 [https://github.com/jfjlaros/barcode/graphs/commit-activity][image: _images/badge.svg]
 [https://github.com/jfjlaros/barcode/actions/workflows/python-package.yml][image: _images/0561255f735e4562a830cac58c6c092d0ab4ae06.svg]
 [https://barcode.readthedocs.io/en/latest][image: _images/barcode1.svg]
 [https://github.com/jfjlaros/barcode/releases][image: _images/barcode2.svg]
 [https://github.com/jfjlaros/barcode/releases][image: _images/barcode3.svg]
 [https://pypi.org/project/barcode/][image: _images/barcode4.svg]
 [https://github.com/jfjlaros/barcode][image: _images/barcode5.svg]
 [https://github.com/jfjlaros/barcode][image: _images/barcode6.svg]
 [https://github.com/jfjlaros/barcode][image: _images/barcode7.svg]
 [https://raw.githubusercontent.com/jfjlaros/barcode/master/LICENSE.md]

Barcode is a program for the design and validation of sets of sequencing
barcodes.

Please see ReadTheDocs [https://barcode.readthedocs.io/en/latest/index.html] for the latest documentation.

Contents:

	Introduction

	Installation
	From source

	Usage

	Command Line Interface
	Positional Arguments

	Named Arguments

	Sub-commands

	Library

	API documentation
	all_barcodes()

	filter_distance()

	filter_stretches()

	Contributors

Introduction

Barcodes are used in NGS to tag samples before pooling. After
sequencing, these barcodes are used to demultiplex the data, thereby
assigning the reads to the originating sample.

The key aspect of a good set of barcodes is robustness against read
errors. One read error should not be able to transform one barcode into
another. This requirement can be met by selecting barcodes in such a way
that the edit distance between any pair of barcodes is larger than
one. An additional desired property is the ability to correct read
errors. This can be done by increasing the minimal edit distance between
barcodes to at least three. If one read error occurs, the sequenced
barcode will have a distance of one to the original barcode and a
minimum distance of two to any of the other barcodes. If the read error
is high, the minimum edit distance should be increased to a higher (odd)
number.

For some sequencers it is important that mononucleotide stretches in
barcodes are below a minimum length. An additional filter can be used to
remove these barcodes.

Installation

The software is distributed via PyPI [https://pypi.python.org/pypi/barcode], it can be installed with pip:

pip install barcode

From source

The source is hosted on GitHub [https://github.com/jfjlaros/barcode.git], to install the latest development version, use
the following commands.

git clone https://github.com/jfjlaros/barcode.git
cd barcode
pip install .

Usage

The barcode program has two subcommands; one for the creation of a
set of barcodes and one for the validation of an existing set of
barcodes.

To make a set of barcodes and write this set to a file named
barcodes.txt, use the following command:

barcode make barcodes.txt

barcodes.txt will now contain a list of barcodes that all have
length 8, and no barcode will contain a mononucleotide stretch longer
than 2.

The length of the barcodes can be controlled with the -l parameter,
the minimum edit distance is controlled with the -d option and the
maximum mononucleotide stretch length can be set with the -s option.
So if we want to make a list of barcodes of length 10, a minimum edit
distance of 5 (allowing for the correction of 2 read errors) and a
maximum mononucleotide stretch of 1, we use the following command:

barcode make -d 5 -l 10 -s 1 barcodes.txt

To verify a list of existing barcodes, use the command:

barcode test barcode.txt

This will check the distance between any pair of barcodes and will tell
you how many barcodes violate the distance constraint. Again, the
minimum edit distance can be set with the -d parameter.

Additionally, a good set of barcodes can be extracted by providing an
output file via the -o option:

barcode test -o good_barcodes.txt barcodes.txt

Command Line Interface

Design and test NGS barcodes.

usage: barcode [-h] [-v] {make,test} ...

Positional Arguments

	subcommand

	Possible choices: make, test

Named Arguments

	-v

	show program’s version number and exit

Sub-commands

make

	Make a set of barcodes, filter them for mononucleotide stretches and for
	distances with other barcodes.

barcode make [-h] [-d DISTANCE] [-H] [-l LENGTH] [-s STRETCH] OUTPUT

Positional Arguments

	OUTPUT

	output file

Named Arguments

	-d

	minimum distance between the barcodes (int default=3)

Default: 3

	-H

	use Hamming distance

Default: False

	-l

	lenght of the barcodes (int default=8)

Default: 8

	-s

	maximum mononucleotide stretch length (int default=2)

Default: 2

test

Test a set of barcodes.

barcode test [-h] [-d DISTANCE] [-H] [-o OUTPUT] INPUT

Positional Arguments

	INPUT

	input file

Named Arguments

	-d

	minimum distance between the barcodes (int default=3)

Default: 3

	-H

	use Hamming distance

Default: False

	-o

	list of good barcodes

Copyright (c) Jeroen F.J. Laros <J.F.J.Laros@lumc.nl>

Library

Barcode design via the library is done in three steps. First obtain the
full set of permutations with the all_barcodes function:

>>> from barcode import all_barcodes, filter_distance, filter_stretches
>>>
>>> # Generate all barcodes of length 2.
>>> all_barcodes(2)
['AA', 'AC', 'AG', 'AT', 'CA', 'CC', 'CG', 'CT', 'GA', 'GC', 'GG', 'GT', 'TA',
'TC', 'TG', 'TT']

The resulting list can be filtered with the filter_distance and
filter_stretches functions:

>>> # Filter all barcodes of length 3 for a minimal edit distance of 3.
>>> filter_distance(all_barcodes(3), 3)
['AAA', 'CCC', 'GGG', 'TTT']
>>>
>>> # Filter all barcodes of lenght 2 for mononucleotide stretches of length
>>> # longer than 1.
>>> filter_stretches(all_barcodes(2), 1)
['AC', 'AG', 'AT', 'CA', 'CG', 'CT', 'GA', 'GC', 'GT', 'TA', 'TC', 'TG']

For the best result, apply the filter_stretches function before
applying the filter_distance function:

>>> # Make a set of barcodes of length 3, having no mononucleotide stretches
>>> # and a minimum edit distance of 3.
>>> filter_distance(filter_stretches(all_barcodes(3), 1), 3)
['ACA', 'CGC', 'GAG']

API documentation

	
barcode.barcode.all_barcodes(length)

	Generate all possible barcodes of a certain length.

	Parameters

	length (int) – Lenth of the barcodes.

	Returns list

	List of barcodes.

	
barcode.barcode.filter_distance(barcodes, min_dist, distance=<function distance>)

	Filter a list of barcodes for distance to other barcodes.

	Parameters

	
	barcodes (list) – List of barcodes.

	min_dist (int) – Minimum distance between the barcodes.

	distance (function) – Distance function.

	Returns list

	List of barcodes filtered for distance to other
barcodes.

	
barcode.barcode.filter_stretches(barcodes, max_stretch)

	Filter a list of barcodes for mononucleotide stretches.

	Parameters

	
	barcodes (list) – List of barcodes.

	max_stretch (int) – Maximum mononucleotide stretch length.

	Returns list

	List of barcodes filtered for mononucleotide stretches.

Contributors

	Jeroen F.J. Laros <J.F.J.Laros@lumc.nl> (Original author, maintainer)

Find out who contributed:

git shortlog -s -e

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 barcode	

 	
 	
 barcode.barcode	

Index

 A
 | B
 | F
 | M

A

 	
 	all_barcodes() (in module barcode.barcode)

B

 	
 	
 barcode.barcode

 	module

F

 	
 	filter_distance() (in module barcode.barcode)

 	
 	filter_stretches() (in module barcode.barcode)

M

 	
 	
 module

 	barcode.barcode

 nav.xhtml

 Table of Contents

 		
 Barcode: Design and validate NGS barcodes

 		
 Introduction

 		
 Installation

 		
 From source

 		
 Usage

 		
 Command Line Interface

 		
 Positional Arguments

 		
 Named Arguments

 		
 Sub-commands

 		
 make

 		
 test

 		
 Library

 		
 API documentation

 		
 all_barcodes()

 		
 filter_distance()

 		
 filter_stretches()

 		
 Contributors

_static/minus.png

_static/plus.png

_static/file.png

